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Abstract

Conditional image retrieval (CIR), which involves retrieving images by a query image

along with user-specified conditions, is essential in computer vision research for efficient

image search and automated image analysis. The existing approaches, such as com-

posed image retrieval (CoIR) methods, have been actively studied. However, these meth-

ods face challenges as they require either a triplet dataset or richly annotated image-text

pairs, which are expensive to obtain. In this work, we demonstrate that CIR at the image-

level concept can be achieved using an inverse mapping approach that explores the mod-

el’s inductive knowledge. Our proposed CIR method, called Backward Search, updates

the query embedding to conform to the condition. Specifically, the embedding of the query

image is updated by predicting the probability of the label and minimizing the difference

from the condition label. This enables CIR with image-level concepts while preserving the

context of the query. In this paper, we introduce the Backward Search method that enables

single and multi-conditional image retrieval. Moreover, we efficiently reduce the computa-

tion time by distilling the knowledge. We conduct experiments using the WikiArt, aPY, and

CUB benchmark datasets. The proposed method achieves an average mAP@10 of 0.541

on the datasets, demonstrating a marked improvement compared to the CoIR methods in

our comparative experiments. Furthermore, by employing knowledge distillation with the

Backward Search model as the teacher, the student model achieves a significant reduc-

tion in computation time, up to 160 times faster with only a slight decrease in performance.

The implementation of our method is available at the following URL: https://github.com/

dhlee-work/BackwardSearch.

Introduction

Image retrieval (IR) is a critical research area in computer vision [1, 2]. One of its subareas,

content-based IR (CBIR), retrieves images similar to a query image from the database. By per-

forming visual analysis directly, the CBIR method enhances the quality of IR without requiring

the complete annotation of images in the database [3]. In traditional CBIR, image features are

manually extracted and the similarity between images is determined by calculating their dis-

tances [4–6]. These handcraft methods have the benefit of feature vector interpretability [7].

The convolutional neural network (CNN) learns features of two-dimensional images auto-

matically and effectively [8, 9]. Compared to the handcrafted feature extraction method, the
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use of CNN for CBIR has significantly improved the performance of IR [10, 11]. As a lower

layer of the CNN extracting low-level features, the deeper layers enable extract semantic fea-

tures from images [11, 12]. The features extracted from the model are used to perform high-

quality IR. When the latent features of an image are smoothly transitioned on the latent space,

the corresponding image also changes [13–15]. This trend is also observed when the model,

which is trained with the ImageNet dataset, is adopted in another domain dataset (e.g., a digi-

tized painting dataset) [16, 17]. The CBIR method employs these characteristics [18].

In CBIR applications, reflecting the user search intention to a large extent is generally chal-

lenging. Furthermore, retrieving the same image with different query images occurs fre-

quently. This problem arises from the “hubness problem” [19], where the center point on the

latent space tends to be extracted from many different embedding vectors. Conditional IR

(CIR) is an alternative method to increase the diversity of the retrieval results by specifying the

search scope and determining the database to be searched. However, conventional CIR meth-

ods require a fully annotated label [16].

Composed image retrieval (CoIR) [20–22] is a method for CIR. The existing CoIR models

combine embeddings of query images and conditioning text utilizing a fusion module.

Although the fusion of two different modal embeddings has shown great success, these CoIR

methods require lots of triplets<reference image, conditioning text, target image> dataset

which is expensive to collect and verify for training the model. Recently, A zero-shot CoIR

(ZS-CoIR) approach has been studied for generalizability. ZS-CoIR methods are trained using

only image-text pairs [23, 24] or automatically annotated triplets [25, 26]. Although being suc-

cessfully evaluated on the FashionIQ [27] and CIRR [28] datasets, ZS-CoIR requires richly

detailed image-level text descriptions and a large amount of such data, to achieve high model

performance.

In this study, we demonstrate that CIR at the image label can be achieved through an

inverse mapping approach by leveraging the model’s inductive knowledge while maintaining

the query’s context. Specifically, the proposed approach consists of a query image encoder and

the corresponding label mapping function ϕ to learn the relationship between a query and its

associated label. In the course of a conditional search, as the embedding vector of a query

image and the trained ϕ is prepared, backpropagation is used to update the query’s embedding

ensuring that the ϕ generates the corresponding condition label. During the process, of Back-

ward Search, the embedding of the query is iteratively updated to an embedding vector which

ϕ generates a conditioned label. As illustrated in Fig 1 for visual understanding, the latent vec-

tor (a) of the “Impressionism” query image is iteratively updated to a point (c) following the

explicit condition “Rococo” via backpropagation. From (a) to (c), the updated vector passes

through (b), which is the transitional route.

Based on the method described above, we introduce a Backward Search method at the

image-level labels that enables both single and multi-conditional image retrieval while preserv-

ing the contextual information of the query image, even with models not trained on triplet

relationships or rich textual annotations. However, the proposed method requires several iter-

ations in the Backward Search process. To reduce time consumption, we employ a knowledge

distillation method that simply minimizes the mean squared error (MSE) of the output logits

between the student model and the proposed Backward Search process. Using the proposed

method, images can be effectively searched based on the user’s intent from large image data-

bases with complex contextual information, even when only a portion of the images are anno-

tated with labels.

The WikiArt [29], aPY [30], and CUB [31] datasets were used in this study. An ablation

study was performed and t-SNE was employed for visualizing the characteristic of the pro-

posed Backward Search algorithm on the embedding space. In the comparative study, to the
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best of our knowledge, there has been no study on deep learning-based conditional image

search at the image-level label. Thus, although there are limitations in interpreting the results,

we compared our model with those in a similar task. The CoIR models were used for compara-

tive experiments, and the results show an average mAP@10 of 0.541 on the datasets, demon-

strating competitive performance compared to other models. Moreover, by employing

knowledge distillation with the Backward Search model, the student model achieves a signifi-

cant reduction in computation time, up to 160 times faster, with only a minimal drop in

performance.

The contributions of this study are as follows: (1) We propose a conditional image retrieval

method, Backward Search, using a model only trained only on a pair of images and image-

level labels by leveraging inductive knowledge. (2) The proposed method enables single and

multi-conditional image retrieval that satisfies specified conditions while preserving the con-

textual information of the query image. (3) We efficiently reduce the computation time by dis-

tilling the knowledge from the Backward Search process into a small forward neural network.

(4) Large image databases with complex context can be effectively searched based on the user’s

intent, even when only a portion of the images are annotated with labels. (5) We release cor-

rected attributions for digitized artwork images in the WikiArt dataset.

Related work

Deep learning-based CBIR methods focus on learning image feature representations and con-

structing a well-organized embedding space for a dataset. Pretrained models learned from

extensive image datasets are commonly employed as backbone models in CBIR tasks to

Fig 1. Overview of the proposed method. Example query from the WikiArt dataset, where to is initial IR results, and tn is Rococo’ conditioned IR results.

The proposed method updates embedding vectors to to tn through ti by exploring the embedding space. A green box indicates that the retrieved image has

the same class as the condition.

https://doi.org/10.1371/journal.pone.0310098.g001
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achieve this aim. In early studies using deep neural networks, Krizhevsky et al. [32] attempted

to learn embedding vectors as a feature for IR using an autoencoder, and Xia et al. [33] used

class labels to learn the representation of a CNN model, achieving promising IR performance.

In a recent study, Zhao et al. [34] established fine-tuned classification models trained with

painting images, demonstrating that the fine-tuned model can conduct IR. Kiran et al. [35]

proposed a deep learning-based model that captures channel-wise, low-level features of an

image using a sparse autoencoder and a VGG-16 model. Moreover, Hamilton et al. [16] found

that extracted features with ImageNet pre-trained models can search similar images without

additional dimension reduction.

Hamilton et al. [16] introduced a CIR algorithm by pruning irrelevant label nodes within a

predefined k-d tree. However, the algorithm requires a fully annotated label for the training

and test datasets. The CoIR method, which is part of CIR, has been actively researched [20–

26]. For an ordinary CoIR method, Baldrati et al. [22] proposed CLIP4CIR, which includes a

combiner module to fuse embeddings of a reference image, and text conditioning using fine-

tuned CLIP [36] encoders to predict target image embeddings. To improve the generalization

of CoIR, a zero-shot method has been actively studied, Saito et al. [23] introduced Pic2Word,

which uses only image-text pairs based on pre-trained CLIP. Ventura et al. [25] CoVR trained

automatically generated triplets of video datasets. Baldrati et al. [24] proposed SEARL, which

learns from only unlabeled images and generated captions from GPT guidance. In particular,

the SEARLE is a zero-shot model designed to maintain image-level concepts while transform-

ing contextual information. The SEARLE model uses GPT to generate accurate text descrip-

tions of the image’s concept from unlabeled images for training. While it seems similar to our

proposed method in its use of inversion and Knowledge Distillation (KD) techniques, the

SEARLE model employs inversion to obtain concept embeddings of images and simplifies this

process using KD. These ZS-CoIR methods have shown promising performance even with

unseen data such as FashionIQ [27] and CIRR [28].

The inversion approach used in the proposed Backward Search method involves using the

outcomes of actual observations to deduce the parameter values characterizing the system and

estimate data not readily observable directly [37]. In the context of images, deep neural net-

works have successfully addressed inverse problems, including image recovery, restoration,

deconvolution, super-resolution, anomaly detection, and others [38, 39]. Considering that

most methods commonly use a regularization term to alleviate ill-posed behavior [40], the pro-

posed method uses regularization to preserve the features of the query image.

Knowledge distillation (KD) has been applied to reduce the computational cost of Back-

ward Search. Knowledge distillation aims to transfer knowledge from a cumbersome teacher

model to a simpler student model [41]. In the general approach, the objective function involves

minimizing the Kullback−Leibler divergence (KLD) loss between the softened probability dis-

tributions of the teacher and student models [42]. A recent study by Kim et al. [43] demon-

strated that competitive knowledge distillation from a cumbersome teacher model can be

achieved by minimizing the MSE between the logit vectors of the penultimate layer of the

teacher and student models, as opposed to using the KLD loss. Inspired by this research, the

proposed approach adopts knowledge distillation by minimizing the MSE loss between the

output logit vectors of the teacher and student models.

Methodology

Overall architecture

Fig 2 illustrates the comprehensive methodology employed in this study. Fig 2A displays the

first step of the proposed method. A model is constructed and trained by connecting an
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encoder and a classification model ϕ. The encoder extracts the embedding vector of the query

image and the model ϕ maps the embedding vector to the label.

The encoder model consists of a backbone model and a fully connected (FC) layer dimen-

sion reduction layer. The ImageNet pre-trained models VGG16_bn [32] (VGG), Resnet50

[44] (RN), Vision Transformer base [45] (ViT), and ConvNext-base [46] (CN) were used for

the backbone model in an ablation study. The embedding vector of the backbone model is

extracted from the penultimate layer. Since the vectors from the backbone model are large, a

simple FC layer reduces the dimensions of the features from the backbone due to the computa-

tional cost and normalizes the embedding size between the backbone models. In all experi-

ments, the backbone model of the encoder is the CN model, which demonstrates the highest

performance. and the model ϕ consists of only three FC layers. Additionally, each hidden layer

in the module ϕ is applied with both a batch normalization layer [47] and a dropout layer [48].

Multiple classification models can be applied for the number of properties of interest for

the CIR process (e.g., the WikiArt property style and genre classification models are con-

structed in this study). The general loss function of the proposed models is formulated in Eq 1:

Ltotal ¼
X

i2N

aiCE yi; ϕi encoder xð Þð Þ
� �

ð1Þ

where N represents the number of classification models, and αi is the weight score associated

with the i-th property, reflecting its importance in the overall model. yi is the ground truth label

for the i-th property, and x is the input image. The ‘encoder‘function transforms the input

image x into an embedding vector suitable for classification. Each ϕi is a classification module

tailored to the i-th property, which processes the encoded image to predict the probability of

each class. The cross-entropy loss (CE) measures the discrepancy between the ground truth

label yi and the predicted probability output from the classification module ϕi (encoder(x)).

Fig 2. Proposed conditional image retrieval method.

https://doi.org/10.1371/journal.pone.0310098.g002
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In the subsequent step shown in Fig 2B, the trained encoder extracts embedding vectors,

contributing to the establishment of an embedding database tailored for IR. The embedding

database DBemb is constructed as shown in Eq 2:

DBemb ¼ f x; zð Þ j z ¼ encoder xð Þ; x 2 DBg ð2Þ

Where x represents a image in the database DB and the encoder is the trained model shown in

Fig 2A.

Fig 2C provides a visual representation of the search method. In the context of IR (without

conditions), an embedding vector is extracted upon inputting the query image into the

encoder. This vector is used to execute a search within the image database generated in Fig 2B,

seeking images that demonstrate high similarity to the query vector. Eq 3 represents the pro-

cess of retrieving the image x that corresponds to the embedding z in the database DBemb with

the highest similarity to the query image xq.

x∗ ¼ argmin
x;zf g2DBemb

d encoder xq
� �

; z
� �

ð3Þ

Where δ is the distance function that measures between the query embedding zq and z from

the database DBemb. Cosine similarity is employed in these cases.

In the proposed CIR method, Backward Search, the embedding vector extracted from the

encoder is iteratively updated until the model ϕ accurately produces the conditioning label.

The resulting updated embedding vector is then used to search the embedding vector image

database built in Fig 2B, using a process similar to that of IR. More details are provided in the

following section.

Backward search

We propose a Backward Search that utilizes the inductive knowledge of a trained model, as

shown in Fig 2A, to perform CIR. The proposed Backward Search finds the optimal embed-

ding that satisfies the conditions while maintaining the features of the query image based on

inductive knowledge. Once the optimal embedding is found, it retrieves the closest embedding

present in the database, as described in Eq 3, and outputs the corresponding image. An inverse

mapping approach is used to find the optimal embedding, and the mathematical expression

for obtaining the optimal embedding we propose is shown in Eq 4:

z∗ ¼ arg min
z

Xm

i¼1

CE yyi ; �i zð Þ
� �

þ lR z � z0ð Þ

" #

ð4Þ

where m represents the number of conditions, z is the query embedding, and z0 is the initial

latent vector. The condition label is denoted by yyi , and ϕi represents the classification module

corresponding to the i-th condition. CE measures the cross-entropy loss between the specified

condition label yyi and the predicted probability byi as ϕi(z). Additionally, the regularization

term R preserves the characteristics of the initial latent vector z0, alleviating the ill-posed prob-

lem, and the parameter λ balances the contribution of the regularization term.

Specifically, Backward Search finds the optimal z* by minimizing the cross-entropy loss

between ŷ and the target condition y† under the penalty term R as described in Eq 4. Thus, the

Backward Search relies on the inductive knowledge of the module ϕ in the process of finding

the optimal z*. In implementations, As depicted in Fig 2C, we use the iterative approximation

suggested in [37], using backpropagation. The proposed method iteratively repeats the men-

tioned process until z is reaches the embedding vector z* in the embedding space, which
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corresponds to y†. The proposed Backward Search algorithm is summarized in Fig 3. Further

details on the experimental setup and model implementation are presented in the Implemen-

tations section.

Backward search knowledge distillation

In the proposed method, the number of iterations needs to update the embedding vector until

the conditioning label is satisfied results in significant time consumption. In order to reduce

the time consumption, we adopt the knowledge distillation method. The KD method consists

of a teacher model and a student model, aiming to distill the knowledge from the larger teacher

model into the smaller student model so that the student model’s outcomes match those of the

teacher model. Fig 4 shows the proposed approach to the knowledge distillation method. We

consider the updating embedding process based on Backward Search as the teacher model,

and we have distilled this knowledge into an autoencoder student model. The autoencoder

architecture consists of encoder and decoder modules transferring the input vector

concatenated with embedding and condition to the output of the teacher model. In imple-

menting the student model, each module of the student model has only three layers, with a

batch normalization layer [47] and a dropout layer [48] applied to the outputs of each hidden

layer in the model. A condition is one-hot encoded and concatenated with the query image

embedding vector to be input into the student model. The knowledge distillation process is as

follows: When z and the condition are provided, the Teacher model produces the updated z

using our proposed Backward Search. The Student model feeds the concatenated z with the

one-hot encoded condition to predict the updated z as produced by the Teacher model. As

Fig 3. Proposed Backward Search algorithm for conditional image retrieval.

https://doi.org/10.1371/journal.pone.0310098.g003
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demonstrated by Kim et al. [43], we simply minimized the MSE loss as the KD loss between

the output logit vectors of the teacher and student models.

Evaluation metric. Jaccard similarity was employed to assess the similarity of the

retrieved images with respect to the attributes of the query image. Using the annotated attribu-

tions and tags of the images in the dataset, we calculated the Jaccard similarity [49] between

the images by matching them. The Jaccard similarity value ranges from 0 to 1, with higher val-

ues indicating higher similarity in form and semantic characteristics between the two images.

To measure this, we used the average top k mean tag similarity (mTS@k). As the mAP is a

widespread metric in IR tasks (2), We employed the mean average precision at k (mAP@k) val-

ues by comparing the labels of the retrieved images with the query’s conditions.

Experiments

Datasets

As Table 1 presents the evaluated benchmark datasets, This study employs the WikiArt [29],

Caltech-UCSD Birds-200-2011 (CUBS) [31], and attributes Pascal and Yahoo (aPY) [30]

benchmark datasets. The CUBS [31] benchmark is a fine-grained recognition dataset compris-

ing images of 200 distinct bird species, totaling 11,788 images. Each image includes detailed

Fig 4. Proposed knowledge distillation model for the Backward Search.

https://doi.org/10.1371/journal.pone.0310098.g004

Table 1. Datasets and queries used in the experiments.

Dataset Source Dataset Condition (# classes) Images Query

Train Test Test

CUB-bird CUB [31] Bird (200) 8,250 3,538 1,000

aPY-category aPY[30] Subcategory (20) 6,340 6,355 1,000

WikiArt-style WikiArt[29] Style (27) 65,155 16,289 1,000

WikiArt-multi WikiArt[29] Style (27), Genre (11) 65,155 16,289 1,000

https://doi.org/10.1371/journal.pone.0310098.t001
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annotations, including one subcategory label, 15-part locations, 312 binary attributes, and one

bounding box. We randomly divided the CUB dataset into training and testing datasets in a

7:3 ratio.

The aPY benchmark is a coarse-grained dataset comprising 15,339 images from three

broad categories, further divided into 32 subcategories. There are only 20 subcategories avail-

able in the aPY dataset. Because aPY has multiple objects in an image, we cropped the objects

with the bounding box information provided and used the cropped images for training and

testing.

WikiArt contains 81,444 works of visual art by various artists, taken from WikiArt.org.

Each image has artist, genre, and style labels. In this study, for simplicity, we apply only the

style and genre class labels, with 27 style classes and 11 genre classes, including the “unknown

genre” class. To assess the CIR performance of the proposed model, we collected attributions

for images from the WikiArt dataset [29]. Using Selenium WebDriver, a Python library, we

automatically retrieved attributions, such as style, genre, media, and textual descriptions asso-

ciated with each image from WikiArt.org. Our study calculates the mean tag similarity using

not only style and genre but also 141 media types and 5132 unique tags. We enclosed the col-

lected attribution data with the source code.

In this experimental section, we refer to the aPY-category, CUB-bird, WikiArt-style, and

WikiArt-multi sets comprising generated image–label pairs as demonstrated in Table 1. Spe-

cifically, aPY-category includes 20 subcategories, CUB-bird involves 200 bird species,

WikiArt-style includes 27 styles, and WikiArt-multi is a randomly selected style and genre as a

condition. Considering the time and cost of model evaluation, this study randomly generated

1000 image–class paired test query sets for each test dataset with a balance between classes.

Less than 10 data satisfying an image–class pair based on tags with a Jaccard similarity of 0.1,

We also excluded attributions with a high frequency from the CUB datasets based on an occur-

rence of above 0.8 at the percentile level to achieve clearer results.

During the evaluation process, we assessed our CIR system using test datasets, which

included generated image–class pairs such as aPY-category, CUB-bird, WikiArt-style, and

WikiArt-mult. We evaluated the system using mAP@10, focusing on the emergence of the

conditioning label. Furthermore, we computed the mean tag similarity (mTS@10) between the

query and retrieved images.

Implementations

The experiment was equipped with a Ryzen 9 5900X processor, an RTX3090 GPU, and 64 GB

of RAM. The system runs on Ubuntu 22.04 and uses Python 3.9, and Cuda 12.2. The main

libraries include Torch 2.0.1, torchvision 0.15, numpy 1.24, sikit-learn 1.3.2, and scipy 1.10.

The pre-trained weights for the encoder backbone model were obtained using torchvision.

In the training phase of the model, the edge size of the image was reduced to 224 while

maintaining the ratio of image dimensions. Afterward, the images were randomly cropped

using the dimensions of 224x224. The cropping tool was RandomResizedCrop, which was

implemented in Torchvision with the default options. Each cropped image was randomly

flipped horizontally or vertically and normalized with ImageNet images using the mean/sd

normalization. The model was trained for 100 epochs. Throughout the training process, the

weights of the backbone module were fixed, and the proposed model was fine-tuned using the

Adam optimizer [50] with a weight decay rate of 0.0001. The learning rate scheduling method

(StepLR), which is implemented in PyTorch, was used with a step size of 30 and a gamma

value of 0.1. In the model inference phase, the images were resized in the same manner as they

were during the training phase. While testing the model, images were center-cropped without
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using RandomResizedCrop or flipping. Last, inverse mapping was executed with 100 iterations

during each trial using a learning rate of 0.2. In addition, early stopping was performed to

obtain quicker results during the process. In the experiments, we implemented the t-SNE [8]

plot with the default t-SNE option in scikit-learn.

Backward search without regularization

Table 2 presents the performance of the Backward Search at λ set to zero in Eq (2). In other

words, the updated embeddings are not regularized during the Backward Search. In this sce-

nario, the Backward Search updates the the vectors to align with the class condition as much as

possible. Under these conditions, the Backward Search achieved mAP@10 scores of 0.633,

0.950, 0.837, and 0.603 for CUB-bird, aPY-category, WikiArt-style, and WikiArt-multi, respec-

tively. Notably, the Backward Search outperformed the random search and k-nearest search,

indicating that it is effective in the context of CIR tasks.

Effect of regularization parameter λ
In this study, the regularization penalty term R in Eq (2) was activated to preserve the overall

features of the query images and update them to the target condition. In other words, the regu-

larization parameter λ controls the degree of influence of R. Fig 5 visualizes the effect of the

regularization parameter λ on a sample image. In Fig 5A, the query image has the style and

genre characteristics of “Impressionism” and “Portrait,” respectively. In the case of this query

image, which has the style condition of “Baroque,” as presented in Fig 5B, the result of CIR var-

ies accordingly with changes in the value of λ. In ordinary IR (k-nearest search), portrait

images similar to the query image are retrieved. With the regularization parameter (λ) set to

16, the proposed model retrieves baroque-style portrait images as the top one and two results,

exhibiting a high visual similarity to the query image. When λ is four, the top three retrieved

images are Baroque-style portrait images. However, the top image is visually less similar, fea-

turing a gray color sketch. With λ set to zero, the proposed model retrieves baroque-style por-

trait images. Nevertheless, the top one and three images are visually less similar, depicting

several people or women. These visualizations illustrate that, as λ decreases, the retrieved

images diverge more from the query images, although the retrieved images meet the specified

conditions.

Fig 5A depicts a t-distributed stochastic neighbor embedding (t-SNE) scatterplot of the

embedding space for Baroque and Impressionism image embedding vectors. As correspond-

ing to Fig 5b retrieved images, on the t-SNE scatterplot, we marked the query and averaged the

embedding vectors of the retrieved images for each λ The scatter plot explicitly illustrates that,

as the value of λ decreases, the distance of the embedding space between the query and

retrieved images increases. Consequently, a smaller λ allows the retrieval of more images that

satisfy the condition, but at the expense of losing the features of the query image. Conversely,

with a larger λ, the retrieved images maintain more features of the query image, but this also

Table 2. Results of the Backward Search performance without regularization.

Method CUB-bird aPY-category WikiArt-style WikiArt-multi

mAP@10 mAP@10 mAP@10 mAP@10

random search 0.005 0.059 0.035 0.008

k-nearest search 0.003 0.015 0.038 0.009

Backward Search (λ = 0) 0.633 0.950 0.837 0.603

https://doi.org/10.1371/journal.pone.0310098.t002
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leads to fewer images satisfying the condition being retrieved. Therefore, the proposed method

allows users to determine the extent to which the features of the query image are reflected in

the retrieved images through the λ parameter.

Fig 6 summarizes these trends, showing a plot of the resulting values of mAP@10 and

mTS@10 for the proposed model based on λ for each dataset. for all datasets, when λ is large,

the retrieved results exhibit high mTS but low mAP. The opposite is true for small λ values.

Therefore, the proposed method enables the adjustment of the extent to which the search con-

dition labels and query images reflect the characteristics of the query by selecting an appropri-

ate λ value for the constraints.

Fig 5. Backward Search results using various λ regularization parameter settings. (A) t-SNE scatterplot depicting the embedding space of the

Baroque and Impressionism dataset embeddings from WikiArt. The ‘init’ query image is marked on the plot. (B) Conditional image retrieval (CIR)

result for the query image in (A). The embedding vectors of the top three retrieved images are averaged and visualized on the same t-SNE scatterplot in

(B). A green box indicates that the retrieved image has the same class as the condition.

https://doi.org/10.1371/journal.pone.0310098.g005

Fig 6. Variation in performance of mAP@10 and mTS@10 based on the lambda value of the regularization term in the test dataset.

https://doi.org/10.1371/journal.pone.0310098.g006
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Ablation study

Table 3 displays ablations performed on various backbone model architectures, investigating

the influence of backbone fine-tuning on the CUB-bird, aPY-category, WikiArt-style, and

WikiArt-multi datasets. In order to facilitate a consistent comparison of the mean Average

Precision (mAP) across models, we adjusted the regularization parameter λ to fix the mTS@10

at a value of 0.15. This allowed for a controlled evaluation of mAP, ensuring that the compari-

sons were made under uniform threshold settings, as outlined in Table 3. Larger embeddings

demonstrate improved performance, and the models with fine-tuned backbones outperform

those without fine-tuning. Despite the anticipated performance improvement with an increas-

ing embedding size, we capped the size at 256 due to the computational constraints. Conse-

quently, the experiments favor the ConvNext-base model with a 256-dimensional embedding

and a fine-tuned backbone during the training process as the optimal configuration.

Comparison with CoIR models

Comparison experiments were conducted using the CoIR model. we employed zero-shot

models such as CoVR (21), Pic2Word (19), and SEARLE (20) along with a conventional CoIR

model, CLIP4CIR (18). The CoVR and CLIP4CIR models used relational triplets, while the

Pic2Word (19) and SEARLE (20) models were based on image-caption pairs. The specifics are

as follows: CoVR was trained on the WebVid-CoVR dataset, Pic2Word on the CC [51] dataset,

and SEARLE on the ImageNet1K [52] dataset. For CLIP4CIR, we used a model trained on the

FashionIQ [27] dataset. We utilized the pretrained weights provided by the respective reposi-

tories. During the experiments, the CoIR’s reference image and conditioning text were derived

from the query image and conditioning label generated for this study, described in the Datasets

section. The retrieved results were then evaluated using the same method as the Backward

Search.

Table 4 presents the outcomes of this comparative study on the CUB-bird, aPY-category,

WikiArt-style, and WikiArt-multi datasets. Although the Backward Search simply learns

image and image-level labels relations, our proposed model surpassed the CoIR models in

Table 3. Experiments involving variations in model architectures and backbone fine-tuning.

Back-bone Fine-tuned Embedding- size CUB-bird aPY-category WikiArt-style WikArt-multi Average

mAP@10 mAP@10 mAP@10 mAP@10 mAP@10

VGG [32] T 128 0.180 0.778 0.427 0.111 0.374

T 256 0.280 0.780 0.513 0.212 0.446

RN [44] T 128 0.408 0.759 0.455 0.124 0.437

T 256 0.479 0.796 0.467 0.175 0.479

ViT [45] T 128 0.371 0.713 0.466 0.118 0.417

T 256 0.494 0.736 0.537 0.21 0.494

CN [46] 64 0.129 0.669 0.318 0.063 0.295

128 0.252 0.731 0.385 0.131 0.375

256 0.330 0.748 0.46 0.167 0.426

T 64 0.192 0.751 0.428 0.096 0.367

T 128 0.407 0.779 0.520 0.186 0.473

T 256 0.481 0.800 0.595 0.289 0.541

We adjusted the regularization λ to maintain an mTS@10 of around 0.150 and then compared the mAP@10 performance. Under these conditions, the average mTS@10

was 0.152, with a standard deviation of 0.0078.

https://doi.org/10.1371/journal.pone.0310098.t003
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mAP@10 performance on the CUB-bird, WikiArt-style, and WikiArt-multi datasets and

achieved the second-highest score on the aPY-category dataset. Despite solely learning cate-

gorical boundaries, the tag similarity of our proposed model outperforms other models across

all datasets, indicating the successful preservation of query image features using the Backward

Search. This outcome highlights the substantial benefit that the proposed method effectively

performs CIR by training the classification task.

Additionally, the performance of WikiArt-multi, which involves satisfying two conditions,

is nearly halved compared to WikiArt-style which has only one condition. This highlights the

challenge of retrieving images that meet multiple conditions. Except for the SEARLE, The

aPY-category data exhibited relatively high performance across all models, likely due to the

clear distinction between class data and class names formed by common vocabulary. Specifi-

cally, the SEARLE model shows lower performance on average compared to other models.

This is likely because the SEARLE model is designed to maintain image-level concepts and

transform contextual information. The concept at this time is mostly the main instance present

in the image. Our proposed model, which maintains the contextual information of the image

and performs CIR based on human-defined image-level concepts, differs from the SEARLE

model that transforms contextual information. As a result, our proposed model seems to per-

form better in experiments involving concept transformation. Notably, the relational triplet-

based CLIP4CIR [22] and CoVR models displayed higher and more stable average perfor-

mance than the image-text-based models, suggesting that triplet-based models may have an

advantage in learning general relations within datasets.

Figs 7 and 8. depict the qualitative results of the models for each test dataset. Fig 7 displays

retrieval results for the WikiArt dataset using the WikiArt-style test query. The query of the

“Art Nouveau Modern” image has the condition style of “Ealy Renaissance”. The proposed

method retrieves all “Ealy Renaissance” paintings except for the top 2 positioned images. In

contrast, in the comparison model, most images either do not satisfy the condition label.

Fig 8 illustrates the retrieval results for the WikiArt dataset using the WikiArt-multi test

query. The query image, depicting a two-person in the style of painting in Rococo with sketch,

has the conditions of Northern Renaissance and portrait. The proposed model searches for

three pictures with people that satisfy both conditions. Even the other images were retrieved

while maintaining the context of the query image. In contrast, the comparison model may

retrieve images satisfying one of the conditions or featuring people and three images satisfy

both conditions but the lost sketch texture information. These qualitative analyses demon-

strate that the proposed model effectively retrieves images corresponding to specific condition

labels during the search process while preserving the characteristics of the query image.

Table 4. Comparison study between the proposed method and state-of-the-art CoIR models on the CUB, aPY, and WikiArt datasets.

Model CUB-bird aPY-category WikiArt-style WikiArt-multi Average

mAP @10 mTS @10 mAP @10 mTS @10 mAP @10 mTS @10 mAP @10 mTS @10 mAP @10 mTS @10

random search 0.005 0.051 0.059 0.089 0.035 0.036 0.008 0.033 0.027 0.052

SEARLE [24] 0.373 0.062 0.263 0.087 0.166 0.017 0.085 0.018 0.222 0.046

Pic2Word [23] 0.311 0.071 0.651 0.125 0.173 0.026 0.109 0.020 0.311 0.061

CoVR [25] 0.263 0.070 0.868 0.147 0.196 0.024 0.004 0.025 0.333 0.067

CLIP4CIR [22] 0.357 0.070 0.778 0.129 0.332 0.035 0.145 0.038 0.403 0.068

Backward Search 0.481 0.149 0.800 0.147 0.595 0.152 0.289 0.147 0.541 0.149

The results of the SEARLE, Pic2Word, CoVR, and CLIP4CIR models used in the comparative study are not the originally reported results from their respective research.

We conducted experiments on the datasets to compare with the results of the proposed Backward Search method.

https://doi.org/10.1371/journal.pone.0310098.t004
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Number of iterations

The proposed Backward Search method updates the embedding vector through iteration,

which requires a certain execution time. To measure the time required in each dataset, the

Backward Search recorded the number of iterations and the time taken. Table 5 lists the

results, detailing the number of updates and the time required for the method to fulfill the con-

dition for a single query in each dataset. Notably, as the embedding size increases, the number

of iterations increases, and processing time lengthens. in our experimental hardware setup (see

section Implementations), It takes an average of 12, 16, and 16 ms, for 128 and 256 embed-

dings to process one query, with the per-query processing speed expected to decrease further

when batch processing is implemented.

Knowledge distillation results

To alleviate the time consumption of the Backward Search approach, we employed the pro-

posed method as a teacher model to distill the backward knowledge to a student model, as

detailed in the Backward Search knowledge distillation section. The results of this knowledge

distillation are presented in Table 6. The student model processes queries approximately 160

times faster than the Backward Search method. However, it shows a decrease of approximately

15% in mAP@10 and an increase of about 13% in mTS@10, compared to the teacher model.

When comparing the retrieved images of both models, the similarity of the retrieved images

suggests that the two models produce relatively comparable results. For instance, the aPY data-

set demonstrates a Jaccard similarity of 0.477, indicating that, on average, about 6 out of 10

Fig 7. Qualitative result of WikiArt test dataset with WikiArt-style query. We mark correct retrieved images with green

boxes for the best view.

https://doi.org/10.1371/journal.pone.0310098.g007
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Fig 8. Qualitative result of WikiArt test dataset with WikiArt-multi query. We mark correct retrieved images with green

boxes for the best view.

https://doi.org/10.1371/journal.pone.0310098.g008

Table 5. Iterations and time consumption per query for the Backward Search.

Dataset Embedding size Backward Search

Iteration mean Iteration Std. Processing time

CUB-bird 128 25.01 3.45 13.05 ms

256 33.63 3.77 18.22 ms

aPY-category 128 22.97 4.74 11.75 ms

256 28.95 5.97 15.96 ms

WikiArt-style 128 20.79 4.65 10.56 ms

256 26.49 5.63 14.65 ms

WikiArt-multi 128 17.50 3.32 13.55 ms

256 17.97 3.18 14.80 ms

https://doi.org/10.1371/journal.pone.0310098.t005

Table 6. Results of knowledge distillation of the Backward Search.

Dataset Teacher (Backward Search) Student Retrieved similarity

mAP@10 mTS@10 Processing time mAP@10 mTS@10 Processing time

CUB-bird 0.481 0.149 18.22 ms 0.344 0.199 0.098 ms 0.616

aPY-category 0.800 0.147 15.96 ms 0.794 0.146 0.102 ms 0.477

WikiArt-style 0.595 0.152 14.65 ms 0.508 0.168 0.097 ms 0.700

WikiArt-multi 0.289 0.147 14.80 ms 0.242 0.160 0.101 ms 0.540

The retrieved similarity was calculated by averaging the Jaccard similarity of the top 10 images searched by the teacher and student model for a single query.

https://doi.org/10.1371/journal.pone.0310098.t006
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retrieved images are matched. Thus, despite its relative simplicity, the student model can effec-

tively distill the knowledge of the Backward Search.

Multi-conditions image retrieval

The proposed CIR method also operates with multiple conditions, producing an image that

fulfills all conditions. With various specified conditions, the model searches for more diverse

types of images. Fig 9 depicts visualized multiple conditions retrieval results. The query image

has the style “Post Impressionism” the genre of “sketch and study” and depicts a countryside

village and people. The retrieved images in Fig 9 maintain the genre of the query image. Fur-

thermore, without conditions, only the top three positioned image were retrieved from “Post

Impressionism” style paintings. When the style “Post Impressionism” was given as a condition,

the style of “Post Impressionism” images was returned by retaining the genre of “sketch and

study” of the query image. Two Conditions introduces multiple conditions, such as the style of

“Post Impressionism” the and genre of “landscape”, and all images belonging to this genre and

style are retrieved. All the images have the style of Post Impressionism but are retrieved as col-

ored landscapes. Last, when the “sketch and study” genre condition is added to the previous

conditions, Interestingly, the images that correspond to all conditions are detected. In this

manner, the proposed method enables the retrieval of images tailored to the user’s intentions

by assigning various conditions and It demonstrates that our proposed model can effectively

retrieve large image datasets with complex contextual information.

Limitations

The proposed Backward Search approach leverages the inductive knowledge acquired by the

trained model, which necessitates supervised label learning to be employed as conditions,

Fig 9. Qualitative multiple condition image retrieval results. We marked the labels of the WikiArt dataset on each retrieved image with colored circles.

purple is "sketch and study", green is "landscape", and blue is "Post Impressionism".

https://doi.org/10.1371/journal.pone.0310098.g009
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requiring a substantial amount of data for generalized performance. Furthermore, the Back-

ward Search process requires iterative updates to find the optimal embedding vector, which is

time-consuming. To address these issues, we employ knowledge distillation successfully reduc-

ing the computing time, as detailed in Table 6. However, the mAP retrieval performance of the

student model is observed to slightly decrease.

The proposed method conducts CIR at the image-level label, presenting limitations com-

pared to models such as CoIR which accept natural language text as conditions. The Fash-

ionIQ and CIRR datasets used in the CoIR models are labeled with the relation between

images and natural language, making it challenging to experiment with our proposed model.

Therefore, in this study, we conducted comparative experiments using aPY, CUB, and Wikiart

datasets. In future work, we plan to extend our proposed model to enable conditional search

with natural language as well, and to experiment with the FashionIQ and CIRR datasets. Addi-

tionally, in the comparison experiments with CoIR, the divergent vocabulary coverage and

domain shift in the comparative model may cause the performance decline. This suggests that

the ZS-CoIR model could also experience degradation in performance when dealing with

domain-specific datasets. However, As CoIR methods require predefined relational triplets or

many well-described captions, our approach does not require such structures and can perform

conditional searches solely based on image-level label datasets which have many public data-

sets. Additionally, future research could explore incorporating the CLIP model to study inver-

sion-based CIR models that use text as conditions, which could mitigate the limitations of the

proposed method.

Conclusions

This study proposes a conditional image retrieval based on Backward Search with inductive

knowledge. The proposed approach enables searches that are aligned with user intent by utiliz-

ing image-level labels as conditions. By employing the aPY, CUB, and WikiArt datasets, the

performance of the proposed method was evaluated both qualitatively and quantitatively.

Comparative evaluations reveal that the proposed model has a competitive performance com-

pared to the CoIR model. While the proposed method has limitations in performing condi-

tional retrieval only at the image-level label compared to the CoIR method, it offers significant

advantages. Specifically, it effectively preserves and controls the query image’s contextual

information without the need for triplets or detailed image captions. However, The Backward

Search operates iteratively and can be time-consuming depending on the environment. To

address these drawbacks, we implement a knowledge distillation method that streamline the

Backward Search process. As a result, the proposed student model successfully reduces the

computing time with only a slight decrease in retrieval performance. For future work, we

intend to explore the application of the Backward Search method for conditioning with natural

language text, utilizing CLIP models. We believe the CLIP model, which constructs an inte-

grated embedding space of multi-modalities, will enable our proposed Backward Search to

retrieve images based on natural language conditions.
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